IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EEE/ISE PART II MEng. BEng and ACGI

SIGNALS AND LINEAR SYSTEMS

SAMPLE PAPER (2011)

Time allowed: 2:00 hours

There are 15 questions on this paper.

This paper is accompanied by four tables of formulae.

ANSWER ALL QUESTIONS.

1. Explain briefly what is a linear time-invariant (LTI) system. *(Lecture 1)*

[2]

- 2. For each of the following cases, specify if the signal is even or odd:
 - i) $x(t) = \sin \alpha$
 - ii) $x(t) = j \cos \alpha$.

(Lecture 1)

[4]

[4]

[4]

3. A continuous-time signal x(t) is shown in Figure 1.1. Sketch the signals

i)
$$x(t)[u(t) - u(t-2)]$$

$$ii) \qquad x(t)\,\delta(t-2).$$

(Lecture 1)

- 4. Consider the LR circuit shown in Figure 1.2. Find the relationship between the input $v_s(t)$ and the output $V_L(t)$ in the form of:
 - *i*) a differential equation;
 - *ii*) a transfer function.

[5]

[5]

(Lectures 2 & 7)

5. The unit impulse response of an LTI system is $h(t) = e^{-t} u(t)$. Use the convolution table, find the system's zero-state response y(t) if the input $x(t) = e^{-2t}u(t)$.

(Lectures 4/5, Tutorial 3 Q3b)

6. Find and sketch $c(t) = f_1(t) * f_2(t)$ for the pairs of functions as shown in Figure 1.3.

[5]

Figure 1.3

7. Find the pole and zero locations for a system with the transfer function

$$H(s) = \frac{s^2 - 2s + 50}{s^2 + 2s + 50}.$$
[5]

(Lectures 8, Tutorial 5 Q9)

8. The Fourier transform of the triangular pulse f(t) shown in Fig. 1.4 (a) is given to be:

$$F(\omega) = \frac{1}{\omega^2} (e^{j\omega} - j\omega e^{j\omega} - 1)$$

Use this information and the time-shifting and time-scaling properties, find the Fourier transforms of the signal $f_i(t)$ shown in Fig. 1.4 (b).

Figure 1.4

(Lectures 10, Tutorial 6 Q5)

9. Using the z-transform pairs given in the z-transform table, find the inverse z-transform of

$$X[z] = \frac{z(z-4)}{z^2 - 5z + 6}.$$

[8]

[5]

(Lectures 14/15, Tutorial 8 Q6a)

⁽Lectures 5, Tutorial 3 Q6c)

10. Fig. 1.5 shows Fourier spectra of the signal $f_1(t)$. Determine the Nyquist sampling rates for the signals $f_1(t)$ and $f_1^2(t)$.

Figure 1.5

(Lectures 12, Tutorial 7 Q2a)

11. Find the unit impulse response of the LTI system specified by the equation

$$\frac{d^2 y}{dt^2} + 4\frac{dy}{dt} + 3y(t) = \frac{dx}{dt} + 5x(t).$$
[10]

(Lectures 2 & 3, Tutorial 2 Q5)

12. A line charge is located along the x axis with a charge density f(x). In other words, the charge over an interval $\Delta \tau$ located at $\tau = n\Delta \tau$ is $f(n\Delta \tau)\Delta \tau$. It is also known from Coulomb's law that the electrical field E(r) at a distance r from a charge q is given by:

 $E(r) = \frac{q}{4\pi\varepsilon r^2}$, where ε is a constant.

Show that electric field E(x) produced by this line charge at a point x is given by

$$E(x) = f(x) * h(x),$$
 where $h(x) = \frac{q}{4\pi\varepsilon x^2}.$ [10]

(Lectures 4 & 5, Tutorial 3 Q8)

13. A discrete LTI system specified by the following difference equation:

$$y[n+1] - 0.8y[n] = x[n+1]$$

a) Find its transfer function in the z-domain.

[10]

b) Find the frequency response of this discrete time system. [10]

(Lectures 16)

[THE END]

[8]

Table of formulae for E2.5 Signals and Linear Systems (For use during examination only.)

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda_2$
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$
7	$t^N u(t)$	$e^{\lambda t}u(t)$	$\frac{N! e^{\lambda t}}{\lambda^{N+1}} u(t) - \sum_{k=0}^{N} \frac{N! t^{N-k}}{\lambda^{k+1} (N-k)!} u(t)$
8	$t^M u(t)$	$t^N u(t)$	$\frac{M!N!}{(M+N+1)!} t^{M+N+1} u(t)$
9	$te^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_2 t} - e^{\lambda_1 t} + (\lambda_1 - \lambda_2)te^{\lambda_1 t}}{(\lambda_1 - \lambda_2)^2} u(t)$
10	$t^M e^{\lambda t} u(t)$	$t^N e^{\lambda t} u(t)$	$\frac{M!N!}{(N+M+1)!} t^{M+N+1} e^{\lambda t} u(t)$
11	$t^M e^{\lambda_1 t} u(t)$	$t^N e^{\lambda_2 t} u(t)$	$\sum_{k=0}^{M} \frac{(-1)^{k} M! (N+k)! t^{M-k} e^{\lambda_{1} t}}{k! (M-k)! (\lambda_{1}-\lambda_{2})^{N+k+1}} u(t)$
	$\lambda_1 eq \lambda_2$		$+\sum_{k=0}^{N}\frac{(-1)^{k}N!(M+k)!t^{N-k}e^{\lambda_{2}t}}{k!(N-k)!(\lambda_{2}-\lambda_{1})^{M+k+1}}u(t)$
12	$e^{-\alpha t}\cos{(\beta t+\theta)u(t)}$	$e^{\lambda t}u(t)$	$\frac{\cos{(\theta-\phi)}e^{\lambda t}-e^{-\alpha t}\cos{(\beta t+\theta-\phi)}}{\sqrt{(\alpha+\lambda)^2+\beta^2}}u(t)$
			$\phi = \tan^{-1}[-\beta/(\alpha + \lambda)]$
13	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t}u(t) + e^{\lambda_2 t}u(-t)}{\lambda_2 - \lambda_1} \operatorname{Re} \lambda_2 > \operatorname{Re} \lambda_1$
14	$e^{\lambda_1 t}u(-t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_2 - \lambda_1} u(-t)$

Convolution Table

No.	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
6	$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
7	$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
8a	$\cos bt u(t)$	$\frac{s}{s^2 + b^2}$
8b	$\sin bt u(t)$	$\frac{b}{s^2 + b^2}$
9a	$e^{-at}\cos bt u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
9b	$e^{-at}\sin bt u(t)$	$\frac{b}{(s+a)^2 + b^2}$
10a	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
10b	$re^{-at}\cos\left(bt+\theta\right)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
10c	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}$	
	$\theta = \tan^{-1} \left(\frac{Aa - B}{A\sqrt{c - a^2}} \right)$	
	$b = \sqrt{c - a^2}$	
10d	$e^{-at}\left[A\cos bt + \frac{B-Aa}{b}\sin bt ight]u(t)$	$\frac{As+B}{s^2+2as+c}$
	$b = \sqrt{c - a^2}$	

Laplace Transform Table

|--|

No.	x(t)	$X(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
14	$\sin \omega_0 t u(t)$	$rac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+rac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
17	$\operatorname{rect}\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right)$	
18	$\frac{W}{\pi}$ sinc (Wt)	$\operatorname{rect}\left(\frac{\omega}{2W}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi}\operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(\frac{\omega}{2W}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

No.	x[n]	X[z]
1	$\delta[n-n]$	z^{-k}
2	<i>u</i> [<i>n</i>]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$
8	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\gamma)^2}$
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!}\gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$ \gamma ^n \cos \beta n u[n]$	$\frac{z(z - \gamma \cos \beta)}{z^2 - (2 \gamma \cos \beta)z + \gamma ^2}$
11b	$ \gamma ^n \sin \beta n u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12a	$r \gamma ^n \cos{(\beta n+\theta)u[n]}$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12b	$r \gamma ^n \cos{(\beta n + \theta)u[n]}$ $\gamma = \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-\gamma} + \frac{(0.5re^{-j\theta})z}{z-\gamma^*}$
12c	$r \gamma ^n \cos{(\beta n + \theta)u[n]}$	$\frac{z(Az+B)}{z^2+2az+ \gamma ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$ $\beta = \cos^{-1}$	$\frac{-a}{ \gamma } \qquad \theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$

z-transform Table